

Eduardo Pasquetti

Estabilidade Estática e Dinâmica de Torres Estaiadas

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de concentração: Estruturas.

Orientador: Paulo Batista Gonçalves

Eduardo Pasquetti

Estabilidade Estática e Dinâmica de Torres Estajadas

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Paulo Batista Gonçalves Orientador PUC-Rio

João Luis Pascal Roehl PUC-Rio

> Raul Rosas e Silva PUC-Rio

Zenón José G. Nuñez del Prado Universidade Federal de Goiás

Ney Augusto Dumont Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de janeiro, 27 de março de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Eduardo Pasquetti

Graduou-se Engenheiro Civil em Janeiro de 2001, pela Universidade de Passo Fundo (UPF)

Ficha Catalográfica

Pasquetti, Eduardo

Estabilidade estática e dinâmica de torres estaiadas / Eduardo Pasquetti; orientador: Paulo Batista Gonçalvez. – Rio de Janeiro : PUC, Departamento de Engenharia Civil, 2003.

[18], 81 f.; 29,7 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

Engenharia civil – Teses. 2. Instabilidade. 3.
Torres estaiadas. 4. Cabos. 5. Dinâmica não-linear. I.
Gonçalvez, Paulo Batista. II. Pontifícia Universidade
Católica do Rio de Janeiro. III. Título.

Aos meus familiares e a todos que contribuíram na realização deste trabalho.

Agradecimentos

A PUC-Rio e aos professores do departamento, pela oportunidade.

Ao meu orientador, pela convivência, disponibilidade, incentivo, paciência, pelos livros e conhecimentos transmitidos durante este último ano.

Aos meus professores da graduação: Agenor D. de Meira Jr., Ignacio Iturrioz, Mario Paluch, Moacir Kripka e Zacarias M. Chamberlain, pelo incentivo.

A banca examinadora.

Aos meus colegas durante estes dois anos, de forma especial a Andre L. Müller, Chan Kou Wha, Ricardo A. Chaves, Sandoval J. Rodrigues Jr. e Walter M. Guimarães Jr., pela convivência e troca de conhecimento.

Aos funcionários do departamento.

A CNPQ e a FAPERJ, pelo auxílio financeiro.

Resumo

Pasquetti, Eduardo; Gonçalves, Paulo B.. **Estabilidade estática e dinâmica de torres estaiadas.** Rio de Janeiro, 2003. 99p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Torres estaiadas são, em geral, estruturas bastante leves e esbeltas e que apresentam comportamento eminentemente não-linear. Assim, a análise de sua estabilidade sob cargas estáticas e dinâmicas é essencial para se ter um projeto econômico e seguro. Neste trabalho estuda-se a estabilidade estática e dinâmica de um modelo plano de torre estaiada. Especial atenção é dada à modelagem dos estais, que são modelados como elementos de mola (linear ou não-linear) ou como cabos inextensíveis. Faz-se, com base no princípio da energia potencial mínima, um estudo da carga crítica e do caminho pós-crítico. Um estudo paramétrico minucioso permite analisar a influência dos diversos parâmetros físicos e geométricos na estabilidade da torre e chegar às melhores configurações para os estais. Na análise dinâmica atenção especial é dada ao estudo paramétrico da freqüência natural. Com base nos resultados da análise estática, analisa-se também o comportamento global da torre em vibração livre e forçada. Em virtude das não-linearidades, verifica-se que a torre pode apresentar diversos comportamentos típicos de sistemas não-lineares tais como saltos, bifurcações de período e caos.

Palavras-chave

Instabilidade; torres estaiadas; cabos, dinâmica não-linear

Abstract

Pasquetti, Eduardo; Gonçalves, Paulo B.. Static and dynamic stability of guyed towers. Rio de Janeiro, 2003. 99p. MSc Dissertation - Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

Guyed towers are in general very light and slender structures and their behavior under static and dynamic loads is eminently nonlinear. Thus the analysis of its stability under static and dynamic loads is an essential step in obtaining an economic and safe project. In this work the static and dynamic stability analysis of a plain model of a guyed tower is studied. Special attention is given to the modeling of the stays; here they are modeled as spring elements (linear or nonlinear) or as inextensible cables. A study of the critical load and the postcritical nonlinear equilibrium paths is conducted based on the principle of the minimum potential energy A detailed parametric analysis is performed to identify the influence of the physical and geometric parameters of the system on the stability of the tower. This allows one to choose the best configurations for the stays. In the dynamic analysis special attention is given to the parametric study of the system natural frequencies. Based on the results of the static analysis, the global behavior of the tower under free and forced vibration is also analyzed. Due to the inherent nonlinearities, the tower may present dynamic responses typical of nonlinear systems such as jumps, period bifurcations and chaos.

Keywords

Instability; guyed towers; cables, nonlinear dynamics

Sumário

1 Introdução	19
1.1. Motivação	23
1.2. Objetivos	23
1.3. Organização do trabalho	23
2 Cabos em catenária	24
2.1. Determinação das reações sobre os pontos de fixação do cabo	24
2.2. Determinação da inclinação inicial da catenária incompleta- $oldsymbol{a}_0$	26
2.3. Determinação do comprimento do cabo e sua projeção horizontal em	
catenárias completas	28
2.4. Equação da catenária	28
2.5. Variação da forca de tração ao longo do cabo	29
2.6. Deformações dos cabos	30
2.7. Principais características dos cabos de aço	32
3 Análise da Estabilidade - Modelo de Molas	34
3.1. Modelo de molas lineares	34
3.1.1. Energia Potencial total	35
3.1.2. Energia interna de deformação	35
3.1.3. Trabalho das forças externas	36
3.1.4. Equação do caminho pós-crítico de equilíbrio	37
3.1.5. Análise da carga crítica	38
3.1.5.1. Valor limite do parâmetro de protensão $oldsymbol{x}_0$	40
3.1.5.2. Análise da carga crítica a partir da equação na forma dimensional	41
3.1.5.3. Consideração de várias cargas axiais	42
3.1.6. Caminho pós-crítico de equilíbrio	42
3.1.6.1. Análise da estabilidade do caminho pós-crítico	44
3.1.7. Modelos Bi-lineares	46
3.1.8. Caminhos de equilíbrio considerando imperfeições iniciais	49
3.1.8.1. Influência da imperfeição geométrica - $oldsymbol{q}_0$	50
3.1.8.2. Influência da excentricidade do carregamento - e ₁	51

3.1.8.3. Influência da carga lateral - q	51
3.1.9. Influência do aumento no número de estais	52
3.1.9.1. Análise da carga crítica de um modelo de 4 molas	53
3.1.9.2. Análise da estabilidade do caminho pós-crítico de um modelo com 4	ļ
molas	54
3.2. Modelo de molas não lineares	55
3.2.1. Energia interna de deformação	55
3.2.2. Equação do caminho pós-crítico de equilíbrio	56
3.2.3. Análise da carga crítica	56
3.2.3.1. Variação da carga crítica em relação as constantes de mola	56
3.2.3.2. Variação da carga crítica em relação a inclinação da mola	57
3.2.3.2.1. Influência de a_1 e g_1	57
3.2.3.3. Variação da carga crítica em relação ao alongamento inicial da mola	58
3.2.4. Análise da estabilidade do caminho pós-crítico de equilíbrio	60
3.2.5. Caminhos de equilíbrio considerando imperfeições iniciais	63
3.2.6. Influência de um número maior de molas	64
4 Análise da Estabilidade - Modelo de Cabos	65
4.1.1. Variação da energia devida a mudança de configuração dos cabos	65
4.1.2. Equação do caminho pós-crítico de equilíbrio	66
4.1.3. Análise da carga crítica	67
4.1.3.1. Comprimento do cabo constante	67
4.1.3.2. Influência do comprimento do cabo na carga crítica	68
4.1.3.3. Influência do peso e comprimento do cabo	69
4.1.3.4. Influência do fator de protensão f	70
4.1.4. Análise do caminho pós-crítico de equilíbrio	71
4.1.4.1. Estabilidade do caminho pós-crítico	72
4.1.4.2. Afrouxamento de cabos e estabilidade	73
4.1.5. Caminhos de equilíbrio considerando imperfeições iniciais	74
4.2. Representação de cabos por molas não-lineares	76
4.2.1. Funções que representam a variação da força do cabo	76
5 Análise Dinâmica da Estabilidade	79
5.1. Critério dinâmico da estabilidade	79
5.2. Energia Cinética	79
5.3. Equação do movimento	80

5.3.1. Modelo de molas	81
5.3.2. Modelo de cabos	81
5.4. Freqüência natural	82
5.4.1. Máxima freqüência natural	84
5.5. Solução numérica da equação de movimento	85
5.6. Amortecimento crítico	86
5.7. Análise da estabilidade e natureza do movimento	86
5.7.1. Análise do sistema autônomo	87
5.7.2. Análise do sistema não autônomo	91
5.7.2.1. Bifurcação por dobramento de período	92
6 Conclusões	96
6.1. Sugestões para continuidade desta pesquisa	97
7 Referências Bibliográficas	98

Lista de figuras

Figura 1.1: Modelo de uma torre estaiada.	19
Figura 1.2: Torres estaiadas com seção triangular.	20
Figura 1.3: Torres estaiadas com seção tubular.	20
Figura 1.4: Configurações usuais de torres estaiadas.	21
Figura 2.5: (a) Algumas configurações de cabos; (b) diagrama de corpo livre	e de
um cabo.	24
Figura 2.6: cabo em uma configuração frouxa.	27
Figura 2.7: (a) Variação da tração ao longo do cabo; (b) forma da catenária	30
Figura 2.8: Nomenclatura empregada na fabricação de cabos de aço, fig	gura
retirada da referência [12].	32
Figura 2.9: Tabela de cabos para torres estaiadas, referência [12].	33
Figura 3.10: Modelo de molas: (a) configuração inicial. (b) configura	ıção
perturbada.	34
Figura 3.11: Variação do parâmetro de carga crítica em função dos parâme	tros
adimensionais.	39
Figura 3.12: Caminho pós-crítico para diferentes valores da inclinação da m	ıola.
	43
Figura 3.13: Derivada da curvatura inicial com relação a x_0 e x_1 .	45
Figura 3.14: caminhos pós-críticos na fronteira de estabilidade.	46
Figura 3.15: Torre com apenas uma mola	47
Figura 3.16: Caminhos de equilíbrio para o modelo com apenas uma mo	la e
duas molas.	47
Figura 3.17: Reações das molas sobre a torre e seus respectivos braços	de
alavanca.	48
Figura 3.18: Caminhos de equilíbrio considerando que as molas resis	tem
somente a esforços de tração.	48
Figura 3.19: Rompimento de estais: (a) rompe-se a mola tracionada. (b) rom	npe-
se a mola comprimida.	49
Figura 3.20: Modelo imperfeito	49
Figura 3.21: Caminho de equilíbrio do modelo perfeito e com dois níveis	de
imperfeição inicial.	50
Figura 3.22: Caminhos de equilíbrio do modelo perfeito e com dois níveis	de
excentricidade.	51

Figura 3.23: Caminho de equilíbrio do modelo perfeito e com dois níveis o	эt
carregamento lateral.	52
Figura 3.24: Modelo com 4 molas.	52
Figura 3.25: Variação da carga crítica: (a) em função da inclinação das molas	е
(b) em função das constantes de mola.	53
Figura 3.26: Caminhos pós-críticos para diferentes inclinações das molas.	54
Figura 3.27: variação da carga da carga crítica em função do deslocamen	tc
inicial para dois valores de g_1 .	59
Figura 3.28: Caminhos pós-críticos de equilíbrio para diferentes valores de a_1	e
ΔI_{01} .	60
Figura 3.29: Variação $d^2 \Delta p / dq^2$: (a) em função de k_1 e a_1 na ausência de pr	é
tensionamento; (b) em função de $\emph{k}_{\textrm{2}}$ e $\emph{a}_{\textrm{1}}$ na ausência de pr	é
tensionamento. (c) e (d) os casos anteriores com pré-tensionamento.	61
Figura 3.30: Caminhos pós-criticos de equilíbrio.	62
Figura 3.31: Caminhos de equilíbrio: (a) imperfeições iniciais; (b) excentricidad	эt
do carregamento.	63
Figura 3.32: Caminhos de equilíbrio com a presença de carregamento lateral. 6	63
Figura 4.33: Torre estaiada. Modelo com cabos inextensíveis: (a) configuraçã	ăC
fundamental de equilíbrio; (b) configuração perturbada (perturbação	
rotação $m{q}$).	65
Figura 4.34: Inclinação e projeções da reta que une os pontos de fixação	ď
cabo.	67
Figura 4.35: Variação da carga crítica em função da inclinação α .	36
Figura 4.36: Variação da carga crítica em função da inclinação e do comprimento	to
do cabo.	69
Figura 4.37: (a) Variação da carga crítica em função do peso do cabo. (b	ɔ)
variação da carga crítica em função do comprimento cabo.	70
Figura 4.38: Variação da carga crítica em função do pré-tensionamento.	70
Figura 4.39: Caminhos pós-críticos de equilíbrio para diferentes inclinações.	71
Figura 4.40: Curvas limite para o qual o sistema apresenta caminhos pós-crítico	วร
estáveis com carga crítica positiva.	72
Figura 4.41 (a-f) Caminhos de equilíbrio considerando dois ou somente um cab	
	74
	75
Figura 4.43: modelo com cabos com comprimentos diferentes	75

Figura 4.44: Comparação entre a força dada pela catenaria e a equação (4.8)
com as constantes determinadas pelo método dos mínimos quadrados. 78
Figura 5.45: Posição de um elemento da barra de comprimento infinitesimal, ds.
79
Figura 5.46: Variação da freqüência natural circular: (a) em função de α . (b) em
função de λ .
Figura 5.47: Variação da freqüência natural circular: (a) em função do parâmetro
de pré-tensionamento, (b) em função do parâmetro de geometria.
Figura 5.48: Variação do quadrado da freqüência natural circular em função do
parâmetro de carga. 84
Figura 5.49: Variação da Freqüência natural em função de α . 84
Figura 5.50: Vibração livre: (a) comparação entre o modelo de molas lineares e o
modelo de molas não lineares; (b) comparação entre o modelo de cabos e o
modelo de molas usado para representar cabos. 85
Figura 5.51: Relação entre a superfície de energia e o plano fase.
Figura 5.52: Caminho pós-crítico.
Figura 5.53: Parâmetro de carga menor que o crítico: (a) Superfície de energia
(b) plano fase. 89
Figura 5.54 Plano fase para um valor de λ levemente maior que o crítico.
Figura 5.55: Caminho pós-crítico e parâmetro de carga utilizado em cada caso.
90
Figura 5.56 Superfície de energia para carregamento inferior ao crítico 90
Figura 5.57: Parâmetro de carga maior que o crítico: (a) Superfície de energia (b)
plano fase. 91
Figura 5.58: Plano fase para diversos níveis de carga lateral, com λ maior que λ
crítico. 92
Figura 5.59: Plano fase para diversos níveis de carga lateral, com λ menor que λ
crítico. 92
Figura 5.60: Diagrama de bifurcação do sistema não-autônomo para valores
crescentes da amplitude do carregamento harmônico. Variação da
coordenada generalizada $ heta$ da seção de Poincaré em função do parâmetro
<i>q</i> . 93
Figura 5.61: Plano fase e mapeamento de Poincaré para diferentes
carregamentos extraídos da Figura 5.16. 95

Lista de tabelas

Tabela	2.1:	Deformação	do	cabo	em	função	da	inclinação	da	reta	que	passa
ре	los p	ontos extrem	ios (do cab	ο. α							31

Lista de símbolos

- A, ponto de fixação do cabo ao chão; área da seção transversal da barra;
- A_m , área metálica da seção transversal do cabo;
- A', ponto de fixação do cabo ao chão em catenárias completas;
- B, ponto de fixação do cabo àtorre;
- E, módulo de elasticidade longitudinal do cabo;
- F, força que age em uma mola;
- F_0 , força de pré-tensionamento da mola;
- H, distância entre o ponto de aplicação da carga axial e o apoio da barra:
- L, comprimento da barra; função de Lagrange;
- P, carga axial; ponto no plano de Poincaré;
- P_{cri} , carga axial crítica;
- T força do cabo, energia cinética;
- T_a , período do carregamento;
- T_x , $T_x(q)$, componente horizontal da força que o cabo exerce sobre a barra;
- T_{ν} , $T_{\nu}(q)$, componente vertical da força que o cabo exerce sobre a barra;
- W, trabalho das cargas externas;
- a, coeficientes do polinômio obtido pelo método dos mínimos quadrados;
- b, curvatura inicial do caminho pós-crítico;
- c, coeficiente de amortecimento;
- c_{cri} , coeficiente de amortecimento crítico;
- dDU, derivada da energia interna de deformação em relação a q;
- dx, comprimento infinitesimal segundo a direção x; derivada da função que define a posição do ponto B do cabo, segundo a direção x, em relação ao ponto A;
- ds, comprimento infinitesimal medido ao longo do cabo;

- dy, comprimento infinitesimal segundo a direção y; derivada da função que define a posição do ponto B do cabo, segundo a direção y, em relação ao ponto A;
- f fator de protensão; freqüência natural;
- f(q) força elástica;
- *k*, constantes de mola;
- F_0 , força de pré-tensionamento;
- h, distância entre os pontos de fixação da mola àtorre e o apoio da barra;
- k_{eq} , rigidez equivalente;
- k_{eq} , rigidez equivalente linearizada;
- m_{eq} , massa equivalente;
- nc, número de cabos;
- *nm*, número de molas;
- np número de cargas concentradas;
- p, peso próprio da barra;
- q, carga lateral;
- s, comprimento do cabo;
- s', comprimento do cabo em catenária completa;
- s_x , projeção horizontal do cabo;
- s_x', projeção horizontal do cabo em catenária completa;
- s_v , projeção vertical do cabo;
- s_0 , parte do cabo que fica sobre o chão, em catenárias completas;
- x, eixo na direção horizontal; função posição da barra;
- *v*, velocidade
- y, eixo na direção vertical; equação que define a posição da catenária segundo o eixo vertical; função posição da barra, posição da carga de peso próprio em relação ao comprimento da barra;
- \overline{y} , centro de gravidade da barra;
- w, peso do cabo (N/m)
- ΔU , variação da energia interna de deformação;
- **DW**, variação do trabalho das cargas externas;

- ΔI , alongamento do cabo, mola;
- ΔI_0 , alongamento inicial da mola não linear;
- $\Delta I_{0 \text{lim } k1}$, valor limite de ΔI_0 para o qual, a derivada da carga crítica em relação a k_1 é positiva, para o modelo de mola não linear;
- $\Delta I_{0 \lim k2}$, valor limite de ΔI_0 para o qual, a derivada da carga crítica em relação a k_2 é positiva, para o modelo de mola não linear;
- $\Delta I_{0 \text{lima} 1 k 1}$ valor limite de ΔI_0 para o qual, os termos que contém k_1 na derivada da carga crítica em relação a inclinação são negativos (modelo de mola não linear);
- $\Delta I_{0 lima1k2}$ valor limite de ΔI_{0} para o qual, os termos que contém k_{2} na derivada da carga crítica em relação a inclinação são negativos (modelo de mola não linear);
- $\Delta I_{0\text{max}}$, alongamento inicial que provoca um máximo para a carga crítica;
- ΔI_{0min} , alongamento inicial que provoca um mínimo para a carga crítica;
- Δl_q , alongamento da mola devido a uma rotação q da barra;
- Δp , variação da energia potencial total;
- ΔT , variação da energia cinética;
- Γ, posição da carga axial em relação ao comprimento da barra;
- a inclinação do cabo; inclinação do segmento de reta que passa pelos pontos A e B;
- e, função erro na resolução da catenária incompleta;
- g , relaciona a altura de fixação da mola a barra com o comprimento da mesma;
- $g_{\min 1}$ valor mínimo que g pode assumir, para que $\Delta I_{0\max}$ seja diferente de zero;
- $g_{min 2}$ valor mínimo que g pode assumir, para que haja algum ponto em que a derivada da carga crítica em relação a ΔI_0 seja zero;
- 1, autovalor;
- I_p , parâmetro adimensional de carga;
- I_{ncri} , parâmetro adimensional de carga crítica;

- ${m q}$, coordenada generalizada que descreve a posição da barra em relação a vertical;
- \dot{q} , velocidade da barra em relação a vertical;
- r, densidade da barra;
- x_p , parâmetro adimensional relacionado àcarga de peso próprio;
- x_0 , parâmetro adimensional relacionado àforça de pré-tensionamento da mola;
- x_1 , parâmetro adimensional relacionado as constantes de mola;
- w, freqüência natural circular;